The master equality polyhedron with multiple rows

نویسندگان

  • Sanjeeb Dash
  • Ricardo Fukasawa
  • Oktay Günlük
چکیده

The master equality polyhedron (MEP) is a canonical set that generalizes the Master Cyclic Group Polyhedron (MCGP) of Gomory. We recently characterized a nontrivial polar for the MEP, i.e., a polyhedron T such that an inequality defines a nontrivial facet of the MEP if and only if its coefficient vector forms a vertex of T . In this paper we study the MEP when it is defined by m > 1 rows. We define the notion of a polaroid, a set containing all nontrivial facet defining inequalities. We show how to use linear programming (LP) to efficiently solve the separation problem for the MEP when the polaroid has a compact polyhedral description. We obtain such descriptions via subadditivity conditions whenm = 2 orm = 3 and, using LP duality, show how to efficiently optimize over the MEP. These results yield a pseudo-polynomial time LP-based algorithm to solve the problem min{cx : Ax = b, x ≥ 0, x ∈ Z} when A has at most 3 constraints. For the MCGP and the MEP defined by a single constraint, the notions of two-term subadditivity and valid inequalities for MEP are essentially equivalent. We show this is not true in the case of the MEP when m ≥ 3; In fact, we prove that subadditivity conditions with a sub-exponential number of terms do not imply validity. In particular, when m = 3, we show that four-term subadditivity conditions are necessary and sufficient for validity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Generalization of the Master Cyclic Group Polyhedron

Sanjeeb Dash IBM Research Ricardo Fukasawa Georgia Inst. Tech. Oktay G unl uk IBM Research March 6, 2008 Abstract We study the Master Equality Polyhedron (MEP) which generalizes the Master Cyclic Group Polyhedron and the Master Knapsack Polyhedron. We present an explicit characterization of the polar of the nontrivial facet-de ning inequalities for MEP. This result generalizes similar results...

متن کامل

Benders decomposition and column-and-row generation for solving large-scale linear programs with column-dependent-rows

In a recent work, Muter et al. (2013a) identified and characterized a general class of linear programming (LP) problems known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear together. In a typical CDR-prob...

متن کامل

On the strength of Gomory mixed-integer cuts as group cuts

Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from other facets of master cyclic group p...

متن کامل

Cs 598csc: Combinatorial Optimization

Throughout this lecture we will use affhull to denote the affine hull, linspace to be the linear space, charcone to denote the characteristic cone and convexhull to be the convex hull. Recall that P = {x | Ax ≤ b} is a polyhedron in Rn where A is a m× n matrix and b is a m× 1 matrix. An inequality aix ≤ bi in Ax ≤ b is an implicit equality if aix = bi ∀x ∈ P . Let I ⊆ {1, 2, . . . ,m} be the in...

متن کامل

A 3-Slope Theorem for the infinite relaxation in the plane

In this paper we consider the infinite relaxation of the corner polyhedron with 2 rows. For the 1-row case, Gomory and Johnson proved in their seminal paper a sufficient condition for a minimal function to be extreme, the celebrated 2-Slope Theorem. Despite increased interest in understanding the multiple row setting, no generalization of this theorem was known for this case. We present an exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 132  شماره 

صفحات  -

تاریخ انتشار 2012